Search Bloguru posts

くまごろうのひとりごと

https://en.bloguru.com/kumagoro

くまごろうのサイエンス教室『ニュートリノ震動』

thread
東大宇宙線研究所教授の梶田隆章博士は素粒子のひとつであるニュートリノが質量を持つことを示すニュートリノ震動の発見により、太陽ニュートリノ震動を観測したカナダのアーサー・マクドナルド博士とともに2015年ノーベル物理学賞を受賞した。梶田博士の師匠である小柴昌俊博士が岐阜県にある観測装置カミオカンデを使って、1987年に世界で初めて宇宙から飛んできた大気ニュートリノの観測に成功したことが評価されてアメリカのデイビス博士と共に2002年ノーベル物理学賞を受賞したことでニュートリノは日本人にはなじみがあるが、この時に観測されたニュートリノは16万光年離れた大マゼラン星雲で起きた超新星爆発によって生じたもので、わずか11個のニュートリノを検出した。

小柴博士が使用したカミオカンデは3,000トンの純水を満たした地下1,000メートルのタンクに1,000本の光電子増倍管が取付けられたニュートリノの観測装置で、ニュートリノがタンク内の水分子にたまたま衝突すると電子やミュー粒子などの荷電粒子を発生させるが、これらの粒子が水中での光を越える速度で移動すると、超音速機が大気中で衝撃波を発生するようにチェレンコフ光と呼ばれる特殊な干渉光を発生し、この光を光電子増倍管で測定することが可能になる。光の速度は真空中では自然界で最も速いが、水中では真空中の約0.75倍のため荷電粒子が光の速度を越えることがあるのだ。またミュー粒子がタンク外から侵入したりするのでこれらの雑音を最少とするために地下1,000メートルの場所にタンクを設置するとともに、水に含まれる微量の放射性物質による雑音を除去するために純水を使用したうえで、雑音の中からニュートリノ由来のチェレンコフ光を識別するために精密な観測が要求される。なおこの観測装置は電子ニュートリノとミューニュートリノを検出することは出来るが、タウニュートリノの検出は困難である。故戸塚洋二博士・梶田博士のグループは、小柴博士が使用したカミオカンデの15倍の規模である直径39メートル、高さ41メートルの円筒タンクに5万トンの純水を満たし、13,000本の光電子増倍管が取付けられたスーパーカミオカンデを使って1996年よりニュートリノの観測を続けた。

ニュートリノとはどのような素粒子なのだろう。素粒子物理学では物質を構成する素粒子の仲間として標準模型と呼ばれる12種類の素粒子が特定されている。すなわち6種類のクォークと6種類のレプトンと呼ばれる素粒子だ。レプトンにはマイナスの電荷を持つ電子、電子の約210倍の質量を持つミュー粒子、電子の約3,500倍の質量をもつタウ粒子、それに電荷を持たない電子に対応する電子ニュートリノ、ミュー粒子に対応するミューニュートリノ、タウ粒子に対応するタウニュートリノがある。これらの素粒子のうちわれわれの身近な物質を構成しているのはクォークの中のアップクォーク、ダウンクォーク、それに電子の3つだけだが、他の素粒子は宇宙空間を飛びまわっていたり、素粒子の実験施設である加速器で人工的に作り出すことが出来る。

ニュートリノを歴史的に見ると、1930年にスイスの物理学者パウリは放射性同位元素の原子核崩壊を観察し、エネルギー保存則が成立するためには中性子がベータ崩壊する際に電子を放出するだけでなく、電荷を持たない小さな粒子が飛び出すと考えた。その後イタリア生まれの物理学者フェルミがベータ崩壊理論を提唱し、質量がとても小さいかゼロで他の物質とは反応せずに通り抜けてしまうこの粒子をニュートリノと名づけた。ニュートリノはその質量がとても小さいかゼロである上に電荷を持っていないため、物質を通り抜けてしまう。これはどういうことかというと、水素原子の直径、すなわち電子が原子核の回りをまわる軌道の直径はおよそ10-10メートルであるのに対し原子核の直径は10-15メートルであり、原子核から見ると電子ははるか遠くを周回しているので原子はほとんどが空間でできているためだ。ちなみに原子核を直径43ミリのゴルフボールに例えれば、電子軌道は4,300メートル離れた所を周回していることになり、その間は空間なのだ。ニュートリノは質量が小さいために検出が困難で、1950年代になってアメリカの物理学者ライネスとコーワンが原子炉で発生したニュートリノを初めて観測することに成功した。

宇宙空間を飛びまわっている主に陽子で構成される宇宙線が地球大気の原子核に衝突するとパイ中間子となるが、これはすぐに分裂してミューニュートリノと電子ニュートリノと電子になる。そのため地球には宇宙線由来の大気ニュートリノが大量に降り注いでいる。また太陽の中心部で起こっている核融合反応では4つの陽子からヘリウム原子がつくられ、電子ニュートリノが放出されるが、これは太陽ニュートリノと呼ばれ、地球に降り注いでいる。しかし地球で観測される太陽ニュートリノが理論的モデルから導かれる値より大幅に少ないことが、宇宙物理学では太陽ニュートリノ問題として約40年に渡り議論されてきた。

ニュートリノは宇宙空間を進行中に、電子ニュートリノがミューニュートリノになったり、タウニュートリノが電子ニュートリノに変身することが1960年頃から坂田昌一博士などにより理論的に提唱され、これはニュートリノ震動と名づけられた。これは素粒子の量子力学的な性質によるもので、ニュートリノが粒子としての性質とともに波としての性格も持ち合わせているためだ。特殊相対性理論によれば、ニュートリノが震動するということはニュートリノが光速よりも遅い速度で移動していることになり、すなわちニュートリノに質量があることになる。

梶田博士がカミオカンデのデータ解析により地球の裏側から来るミューニュートリノが少ない、とニュートリノ震動の可能性を最初に発表したのは1988年だったが当時はあまり評価されず、1996年からのスーパーカミオカンデを使った観測により、電子ニュートリノとミューニュートリノの比率がニュートリノ震動を仮定した理論値に近いこと、上方から来る電子ニュートリノと地球の裏側から来る電子ニュートリノの値がほぼ同じだったこと、ミューニュートリノについては上方から来る値は下方から来る値の半分程度であり、減少した分はタウニュートリノに変身していること、などを示すデータが蓄積され、1998年のニュートリノ国際会議での発表によりニュートリノ震動の観測が多くの研究者に認められた。

ニュートリノ震動を確かなものとするために、1999年から2004年にかけて250キロ離れたつくば市にある高エネルギー加速器研究機構の加速器からスーパーカミオカンデに向けて人工的に作ったニュートリノを発射し、ニュートリノ震動が起きている証拠を99%以上の精度で確認した。このK2K実験の成功を発展させ一層精密なニュートリノ震動を実証するために、2009年より東海村のJ-PARC(Japan Proton Accelerator Research Complex)の大強度陽子加速器で作られたK2K実験の50倍のニュートリノビームを約300キロ離れたスーパーカミオカンデに打ち込み、発生源と観測点でのニュートリノのエネルギーや数を高い精度で観測し、ミューニュートリノの電子ニュートリノへの変身の確率などを測定しているが、この実験はT2Kと呼ばれ、これらの実験によりニュートリノ震動は確実なものとなった。

梶田博士とともに2015年ノーベル物理学賞を受賞したマクドナルド博士は太陽ニュートリノの観測に重水を使用することで3種類のニュートリノの総数と電子ニュートリノの数を観測し、太陽の方向から飛んでくるニュートリノの総数はほぼ理論値通りであるのに対し、観測される電子ニュートリノはその3分の1であり、ニュートリノ振動が起こっていることを2002年に発表している。

ニュートリノ震動の観測によりニュートリノに質量があることがはっきりしたが、これは従来の物理学の基本となる標準理論に変更を迫ることになる。またニュートリノの更なる研究は宇宙に物質が存在する理由を明らかにするかもしれない。すなわち宇宙創生のビッグバンの際には物質とそれと同じだが電荷が反対の反物質が同じ数だけ生まれたはずなのにこの宇宙に物質が存在することは、何らかの理由で反物質の数が少なかったためと考えられる。その理由として1964年に素粒子に働く4つの力のうち『弱い力』とよばれるベータ崩壊を起こす力に対象性が崩れていること(CP対象性の破れ)が発見され、1973年に小林誠博士・益川敏英博士は6種類のクォークが存在すればCP対象性が破れるという理論を発表し、2001年に高エネルギー加速器研究機構のB-ファクトリー加速器を使って小林・益川理論が実証されている。しかしCP対象性の破れだけでは宇宙全体の物質の存在を説明出来ない。電荷のないニュートリノが反物質を物質に変えたのではないか、という仮説が提案されているが、この仮説が実験的に確認されれば宇宙の成り立ちが一層明確になる。スーパーカミオカンデの20倍の体積を持つ後継ニュートリノ観測設備であるハイパーカミオカンデが2025年に観測を開始すれば、この仮説が実証されるかもしれない。
#科学

People Who Wowed This Post

  • If you are a bloguru member, please login.
    Login
  • If you are not a bloguru member, you may request a free account here:
    Request Account
KUMA
Commented by KUMA
Posted at 2015-12-18 18:51

わかりやすい説明、ありがとうございます。
物理学の解説は数式が列記されることが多く、一般の方々にはハードルが高いのです。
私もネットワークの解説には相手を考えて説明を試みております。
米国は明日からクリスマス休暇でしょうか?
日本では25日からと29日からと別れております。
暖冬の12月が一転して寒波襲来となっております。

People Who Wowed This Post

くまごろう
Commented by くまごろう
Posted at 2015-12-18 19:40

コメント有難うございました。くまごろうのサイエンス教室は自分がテーマをちゃんと理解しているかを確認する良い機会で、どの程度読んだ方に伝わるか心細いのです。初めの頃は中学生にもわかるように、と思っていたのですが、今回のテーマは難解すぎますね。

それにしてもカーナビや携帯で普及しているGPSもアインシュタインの相対性原理を利用して実現出来ていますが、アインシュタイン自身はそのように利用されるなんて思ってもみなかったことでしょうね。

アメリカでは25日だけが休日で、会社によっては24日が半日です。今年は26日が土曜日なので3連休ですが、新年は元日だけが休日で、例年なら2日から平常営業です。年末年始は日本の方が趣があって良いですね。

KUMAさんも良い新年をお迎え下さい。

People Who Wowed This Post

zakkah
Commented by zakkah
Posted at 2015-12-30 10:21

おはよう御座います、くまごろう先生。

小生の“凡脳”をいつも刺激して頂けて感謝申し上げます。
理系おんちの僕には、毎回、論考を拝するのが楽しみです。難しさは、さておき知識をいただくこと、脳の活性化によろしいなどと勝手に思いながら拝しております。
如何なる分野デモ基礎が大切、文系での過去の資料収集が如何に大切か今年は痛切に思いました。
戦後70年、感慨ある年でした。
“昭和”を根底に日本の未来を想って見よう、を来年のテーマにいたします。

本年も数々の御教示に接し感謝申し上げます。
来たるべく年が、奥様、かりこちゃん、お子様ご家族皆様にとって健やかでありますようお祈り致します。

来年もよろしくお願い申し上げます。

良いお年をお迎えください。

People Who Wowed This Post

くまごろう
Commented by くまごろう
Posted at 2015-12-30 11:59

zakkahさんこんにちわ。日本では今日はもう大晦日ですね。わがやではかみさんがおせち料理の数々を作っており、ここアメリカでも正月がもうすぐであることを感じます。

拙文をお読みいただき有難うございました。素粒子の世界は量子力学が出てくるとくまごろうも理解が怪しくなってきます。何しろ光やニュートリノは粒子であると同時に波でもある、と言われるとイメージしにくくなってきます。物理学者はこのようなことがストンと腑に落ちるという点で尊敬します。

今年の日本のノーベル賞受賞者は、お二人とも天才というよりは努力の人、と感じます。毎日同じような作業を継続して、その中から人類の役に立つ発見をしました。世の中にはノーベル賞には関係なくても、日々同じようなことをして世の中に貢献している人たちが大勢います。ものづくりはもちろんですが、教師、農業者、研究者、医療従事者、はては犯罪に挑む捜査官などなど、多くの人たちの地道な努力が社会を支えていることを改めて感じました。

世界を見ると今年は波乱の多い年でしたね。来年がより良い年になる兆しは見えませんが、人々がお互いに慈しみあえるような世界になってほしいと願っています。そのために最も大切なことは教育なのでしょうね。

zakkahさんのブログで色々なことを教えていただきました。来年も健筆をふるってくださることを期待しています。

zakkahさんも佳い新年をお迎え下さい。

People Who Wowed This Post

Happy
Sad
Surprise